TUTORIAL 4 Introductory Statistics with R

QUU, HUNTER/CUNY

		Ozone	Garden.lo
\sqrtbox Iwo-sample t-test		<dbl></dbl>	<chr></chr>
Data & Hypothesis	1	61.7	West
	2	64	West
	3	72.4	West
	4	56.8	West
	5	52.4	West
	6	44.8	West
• ozone <pre> • read_csv("ozone.csv") </pre>	7	70.4	West
	8	67.6	West
• Question: Ozone level differs between east/west?	9	68.8	West
• Null Hypothesis (H0). No difference $(111 = 112)$	10	53.7	West
$\frac{14011117}{1011117}$	11	59.1	East
	12	78.5	East
glimpse(ozone)	13	73.9	East
## Observations: 20	14	86.1	East
## Variables: 3	15	78	East
## \$ Garden.location (fctr) West, West, West, West, West,	16	84.4	East
## \$ Garden.ID (fctr) G1, G2, G3, G4, G5, G6, G7, G8	17	77.7	East
	18	76.8	East
	19	85.6	East
@QIU, HUNTER/CUNY	20	73.3	East

	Garden.location	Garden.ID
Þ	<chr></chr>	<chr></chr>
	West	G1
	West	G2
	West	G3
	West	G4
	West	G5
	West	G6
	West	G7
	West	G8
	West	G9
	West	G10
	East	G11
	East	G12
	East	G13
	East	G14
	East	G15
	East	G16
	East	G17
	East	G18
	East	G19
	East	G20

Two-sample *t*-test II. Data Visualization

Boxplot


```
ozone %>%
```

QQIU, HUNTER/CUNY

ggplot(data = ozone, aes(x =
Garden.location, y = Ozone)) +
geom_boxplot() +
geom_jitter(shape=1, color="red") +
theme_bw()

Violin plot

Ozone %>%

```
ggplot(data = ozone, aes(x = Garden.location, y
= Ozone)) +
    geom_violin() +
    geom_jitter(shape=1, color="red") +
    theme bw()
```

Two-sample t-test III. Run t-test

Do a t.test now....

t.test(Ozone ~ Garden.location, data = ozone)

##

QQIU, HUNTER/CUNY

Welch Two Sample t-test ## ## data: Ozone by Garden.location ## t = 4.2363, df = 17.656, p-value = 0.0005159 ## ## alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: ## 8.094171 24.065829 sample estimates: ## mean in group East mean in group West ## 77.34 61.26 ##

P value –

- Probability that observed difference is due to chance
- (more specifically) probability that t >= 4.2363 under null hypothesis (H_0)

 $P = 5.2 \times 10^{-14}$

Conclusions:

- Statistical conclusion: The null hypothesis (same mean) is rejected at $p=5.2 \times 10^{-14}$
- Biological conclusion: The ozone level is significantly different between the east & west locations

QUU, HUNTER/CUNY

glimpse	(plant	gr)
---------	--------	-----

##	Observations: 50			
##	Variables: 2			
##	<pre>\$ soil.moisture.content</pre>	(dbl)	0.4696876, 0.5413106, 1.6	
##	<pre>\$ plant.growth.rate</pre>	(dbl)	21.31695, 27.03072, 38.98	

	\prec
<pre>> plant_gr <- read_csv("plant.g</pre>	growth.rate.
CSV")	
Parsed with column specification	on:
cols(
<pre>soil.moisture.content = col_c</pre>	double(),
<pre>plant.growth.rate = col_doubl</pre>	Le()
)	
<pre>> tbl_df(plant_gr)</pre>	
# A tibble: 50 x 2	
soil.moisture.conte~ plant.c	growth.ra~
<db1></db1>	<dbl></dbl>
1 0.470	21.3
2 0.541	27.0
3 1.70	39.0
4 0.826	30.2
5 0.857	37.1
6 1.61	43.2
7 0.250	22.7
8 1.67	40.2
9 1.46	46.9
10 0.473	28.8
# with 40 more rows	

@QIU, HUNTER/CUNY

2.0

Linear Regression III. Run linear model

```
summary (model pgr)
```

QQIU, HUNTER/CUNY

```
##
## Call:
## lm(formula = plant.growth.rate ~ soil.moisture.content,
   data = plant gr)
##
## Residuals:
      Min
                10 Median
                                30
                                       Max
##
## -8.9089 -3.0747 0.2261 2.6567 8.9406
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
   (Intercept)
                          19.348
                                       1.283
                                              15.08
                                                       <2e-16
## soil.moisture.content 12.750
                                      1.021
                                               12.49
                                                       <2e-16
##
   (Intercept)
                         ***
  soil.moisture.content ***
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.019 on 48 degrees of freedom
## Multiple R-squared: 0.7648, Adjusted R-squared: 0.7599
## F-statistic: 156.1 on 1 and 48 DF, p-value: < 2.2e-16
```

Conclusions:

- The null hypothesis (no correlation) is rejected at p<2.2e-16
- The plant growth rate is significantly correlated with soil moisture with R²=0.7599

Linear Regression IV. Re-plot (add regression line & confidence band)


```
geom_smooth(method = 'lm') +
ylab("Plant Growth Rate (mm/week)") +
theme bw()
```

@QIU, HUNTER/CUNY

Data Analysis Workflow

- Define the biological question
- Design a null hypothesis (H_0)
- Pothesis Define an alternative hypothesis (H_1)
 - Identify variables and variable types
 - Show data distributions (transform if necessary)
- Visualization Show data relations
 - Run statistical tests (e.g., *t*-test, linear regression)
 - Modeling

QQIU, HUNTER/CUNY

- Interpret test results (e.g., is null hypothesis rejected?)
- Re-plot
- Draw statistical conclusions
- Draw biological conclusions

PRACTICE #4

- Does the "Sepal.Length" differ between the two species "virginica" & "vesicolor"? Perform a t-test and include all 4 steps
- How about the "Sepal Width"? Perform a t-test and include all 4 steps
- Are the "Sepal.Width" and "Sepal.Length" correlated in the species "setosa"? Show all 4 steps.
- How about in the other two species?
- Batch testing the above correlation in all 3 species at once
- Save all commands to a file "practice-4.R"