TUTORIAL 2 Data Manipulation

@QIU, HUNTER/CUNY

Ó

QQIU, HUNTER/CUNY

- . Download the zip file containing data sets from http://www.r4all.org/the-book/datasets
- 2. Upload: Files \rightarrow Upload \rightarrow Choose file
- 3. Read a data file: compensation ← read_csv("datasets-master/compensation.csv")

Alternatively, read from an online repository:

library(tidyverse)
x <- read_csv("https://wiki.genometracker.org/~weigang/datasets-master/compensation.csv")</pre>

> THE "compensation" DATASET

- Numeric variable "Fruit": production of apple (in kg)
- 2. Numeric variable "Root": width of rootstock (in cm)
- 3. Categorical variable "Grazing": allowing for cattle grazing or not

QQIU, HUNTER/CUNY

```
names(compensation)
## [1] "Root" "Fruit" "Grazing"
head(compensation)
## Root Fruit Grazing
## 1 6.225 59.77 Ungrazed
## 2 6.487 60.98 Ungrazed
## 3 4.919 14.73 Ungrazed
## 4 5.130 19.28 Ungrazed
## 5 5.417 34.25 Ungrazed
## 6 5.359 35.53 Ungrazed
```

```
dim(compensation)
```

```
## [1] 40 3
```

```
str (compensation)
```

##	'data.frame'	: 40 obs. of 3 variables:
##	\$ Root :	num 6.22 6.49 4.92 5.13 5.42
##	\$ Fruit :	num 59.8 61 14.7 19.3 34.2
##	\$ Grazing:	Factor w/ 2 levels "Grazed",
		"Ungrazed": 2 2 2 2 2 2 2 2 2

TIPS FOR VARIABLE & FILE NAMES

<u>Computer-friendly variable/file names</u>

- camelFormatName
- worm_format_name

<u>Computer-unfriendly</u> variable/file names

- "Name with spaces"
- "name-with-dashes"

QQIU, HUNTER/CUNY

- "123nameStartWithNumbers
- "a", "b", "c" (uninformative)

summary(): statistics

select(): choose columns

<pre>select(compensation, Fruit) # use the Fruit column</pre>						
## Source: local data frame [40 x 1]						
##						
## Fruit						
## (dbl)						
## 1 59.77						
## 2 60.98						
## 3 14.73						
## 4 19.28						
## 5 34.25						
## 6 35.53						
## 7 87.73						
## 8 63.21						
## 9 24.25						
## 10 64.34						
##						

compensation <- read.csv("compensation.csv")
glimpse(compensation) # just checkin'</pre>

get summary statistics for the compensation variables
summary(compensation)

##	Root	Fruit	Grazing
##	Min. : 4.426	Min. : 14.73	Grazed :20
##	1st Qu.: 6.083	1st Qu.: 41.15	Ungrazed:20
##	Median : 7.123	Median : 60.88	
##	Mean : 7.181	Mean : 59.41	
##	3rd Qu.: 8.510	3rd Qu.: 76.19	
##	Max. :10.253	Max. :116.05	

slice(): choose rows

slice(compensation, 2:10)

##RootFruitGrazing##16.48760.98Ungrazed##24.91914.73Ungrazed##35.13019.28Ungrazed##45.41734.25Ungrazed##55.35935.53Ungrazed##67.61487.73Ungrazed##76.35263.21Ungrazed##84.97524.25Ungrazed##96.93064.34Ungrazed

slice(compensation, c(2, 3, 10))

Root Fruit Grazing
1 6.487 60.98 Ungrazed
2 4.919 14.73 Ungrazed
3 6.930 64.34 Ungrazed

filter(): conditional row filtering

find the rows where it is true that Fruit is >80 return # them as a data frame filter(compensation, Fruit > 80) ## Root Fruit Grazing ## 1 7.614 87.73 Ungrazed 7.001 80.64 Ungrazed ## 2 ## 3 10.253 116.05 Grazed 9.039 84.37 ## Grazed 4 8.988 80.31 ## Grazed 5 8.975 82.35 ## 6 Grazed ## 7 9.844 105.07 Grazed ## 8 9.351 98.47 Grazed 8.530 83.03 ## 9 Grazed

10	lo_hi_fruit <- filter(compensation, Fruit > 80 Fruit < 20)								
# 1	# now look at it								
10	lo_hi_fruit								
##		Root	Fruit	Grazing					
##	1	4.919	14.73	Ungrazed					
##	2	5.130	19.28	Ungrazed					
##	3	7.614	87.73	Ungrazed					

QQIU, HUNTER/CUNY

^o mutate(): data transformation

what does compensation look like now? head(compensation)

Root Fruit Grazing
1 6.225 59.77 Ungrazed
2 6.487 60.98 Ungrazed
3 4.919 14.73 Ungrazed
4 5.130 19.28 Ungrazed
5 5.417 34.25 Ungrazed
6 5.359 35.53 Ungrazed

use mutate

@QIU,

HUNTER

log(Fruit) is in the column logFruit
all of which gets put into the object compensation
compensation <- mutate(compensation, logFruit = log(Fruit))</pre>

first 6 rows of the new compensation
head(compensation)

Root Fruit Grazing logFruit
1 6.225 59.77 Ungrazed 4.090504

2 6.487 60.98 Ungrazed 4.110546
3 4.919 14.73 Ungrazed 2.689886
4 5.130 19.28 Ungrazed 2.959068
5 5.417 34.25 Ungrazed 3.533687
6 5.359 35.53 Ungrazed 3.570377

arrange(): sort rows

arrange (compensation, Fruit)

##		Root	Fruit	Grazing	logFruit
##	1	4.919	14.73	Ungrazed	2.689886
##	2	6.106	14.95	Grazed	2.704711
##	3	4.426	18.89	Ungrazed	2.938633
##	4	5.130	19.28	Ungrazed	2.959068
##	5	4.975	24.25	Ungrazed	3.188417
##	6	5.451	32.35	Ungrazed	3.476614

Chaining with "%>%" or " |>"

Root values from Fruit > 80 subset
Via piping
compensation %>%
filter(Fruit > 80) %>%
select(Root)

##		Root
##	1	7.614
##	2	7.001
##	3	10.253
##	4	9.039
##	5	8.988
##	6	8.975
##	7	9.844
##	8	9.351
##	9	8.530

Summarize by groups

compensation %>%
group_by(Grazing) %>%
summarise(meanFruit = mean(Fruit))

Transform by groups

compensation_mean_centred <- compensation %>%
group_by(Grazing) %>%
mutate(Fruit_minus_mean = Fruit - mean(Fruit))

Regression by groups

library(broom)
compensation_lms <- compensation %>%
group_by(Grazing) %>%
 do(tidy(lm(Fruit ~ Root, data=.)))

compensation %>%
group_by (Grazing) %>%
summarise(
 meanFruit = mean(Fruit),
 sdFruit = sd(Fruit)

@QIU, HUNTER/CUNY

PRACTICE #2

Load the "iris" dataset with data ("iris") & answer the following questions:

- 1. Fine the dimensions of the dataset
- 2. List the variables and their data types (Hint: run glimpse ("iris"))
- 3. Summarize the variables (Hint: run summary ("iris"))
- 4. Get the last 10 observations of the dataset
- 5. Select only the first four columns (remove the "species" column)
- 6. Filter rows by species, retain only rows from one species (e.g., "setosa")
- 7. Filter rows by a cutoff value (e.g., "Sepal.Length >= 4")
- 8. Add a column by taking the log10 of "Sepal.Lengh"
- 9. What are the medians of the variable "Sepal. Length" for each species?
- 10. Count how many samples for each species
- 11. Save all commands in a file "practice-2.R"