# TUTORIAL 3 Data Visualization with ggplot2

DATA VISUALIZATION: GRAMMATICAL ELEMENTS OF GRAPHICS

Three essential grammatical elements (layers) of graphics:

#### Data: the data which we want to plot.

#### > str(iris)

'data.frame': 150 obs. of 5 variables: \$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 \$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 \$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1 \$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0 \$ Species : Factor w/ 3 levels "setosa"

• Aesthetics layer: refers to the scales onto which we will map our data

Geom layer: allows us to choose how the plot will look like.

**Optional layers**:

Theme layer: which controls all the non-data elements of graphics



#### ggplot2 geometrics:

Data

Geometries

Aesthetics

- Scatterplot: geom\_point(), geom\_jitter()
- Line Plot: geom\_line()
- Histograms: geom\_histogram()
- Box plot: geom\_boxplot()
- Bar plot: geom\_bar()
- Violin plot: geom\_violin()

## HISTOGRAM: DISTRIBUTION OF A NUMERICAL VARIABLE



 $\cap$ 

QUU/HUNTER/CUNY



 $\cap$ 

geom\_histogram(binwidth = 15) +
facet\_wrap(~Grazing)

#### Peaks: the most frequent value (not the highest value)

## BOX PLOT: NUMERICAL VS CATEGORICAL

```
ggplot(compensation, aes(x = Grazing, y = Fruit)) +
geom_boxplot() +
xlab("Grazing treatment") +
ylab("Fruit Production") +
theme_bw()
```

```
ggplot(compensation, aes(x = Grazing, y = Fruit)) +
geom_boxplot() +
geom_point(size = 4, colour = 'lightgrey', alpha = 0.5) +
xlab("Grazing treatment") +
ylab("Fruit Production") +
theme_bw()
```



# @QIU/HUNTER/CUNY

 $\bigcirc$ 

# BOX PLOT

 $\cap$ 

 $\bigcirc$ 

@QIU

HUNTER/CUNY



compensation %>%
ggplot(aes(x = Grazing, y = Fruit)) +
geom\_boxplot(fill = "skyblue") +
geom\_jitter(shape = 1, color = "red") # geom\_jitter() to show sample sizes!
theme\_bw() +
xlab("Grazing treatment") +
ylab("Fruit production") +
labs(title = "This is better than barplot", subtitle = "Weigang, Aug 6, 2024")

# VIOLIN PLOT: NUMERICAL VS CATEGORICAL



 $16 \cap$ 

HUNTER/CUNY

 $\bigcirc$ 

compensation %>%
ggplot(aes(x = Grazing, y = Fruit)) +
geom\_violin(fill = "skyblue") +
geom\_jitter(shape = 1, color = "red") +
stat\_summary() +
theme\_bw() +
xlab("Grazing treatment") +
ylab("Fruit production") +
labs(title = "This is a violin plot", subtitle = "Weigang, Aug 6, 2024")



### **SCATTER PLOT: NUMERICAL VS NUMERICAL**

# plotting basics with ggplot
# my tutorial script
# lots and lots of annotation!

# libraries I need (no need to install...)
library(dplyr)
library(ggplot2)

# clear the decks
rm(list = ls())

# get the data
compensation <- read.csv('compensation.csv')</pre>

# check out the data
glimpse(compensation)

@OIL

IUNTER/CUNY

```
# make my first ggplot picture
ggplot(compensation, aes(x = Root, y = Fruit)) +
geom_point()
```



 aes(): aesthetic mapping between variables and graph features

•\_> geom\_point(): a geometric object

Map a categorical variable to aes(color = variable)

• Apply geom\_smooth(method = "lm") to show regression line



 $\cap$ 

HUNTER/CUNY

ggplot(compensation, aes(x = Root, y = Fruit, colour = Grazing)) +
geom\_point(size = 5) +
xlab("Root Biomass") +
ylab("Fruit Production") +
theme\_bw()



compensation %>%
 ggplot(aes(x = Root, y = Fruit, color = Grazing)) +
 geom\_point() +
 geom\_smooth(method = "lm") +
 theme\_bw()

# Summary: Data visualization

- Scatterplot show relations between two numerical variables (e.g., "Fruit" & "Root")
- Boxplot/Violinplot show distribution (e.g., median) of a numerical variation (e.g., "Fruit") with respect to a categorical variable (e.g., "Grazing")
  - Add "geom\_point" or "geom\_jitter" to show actual data points
  - A better alternative than barplot
- Histogram/Density show frequency distribution (e.g., counts in bins) of a numerical variation (e.g., "Fruit")
- Multidimensional mapping of variables to graphic elements:
  - X-axis
  - Y-axis
  - Color/Fill
  - Panel ("facet\_wrap")

@QIU, HUNTER/CUNY

# PRACTICE #3

- Show distribution of "Sepal.Length" with a histogram. Show distributions by Species.
- Show distributions of "Sepal.Width" by Species with a boxplot
- Filter the **iris** dataset for species "**versicolor**" and save the result to a variable named "**versicolor**"
- Plot a Petal.Width vs Petal.Length scatter plot using the "versicolor" dataset.
- Let's check if Petal.Width and Petal.Length for species "versicolor" are correlated.
  - Read the help page of geom\_smooth()
    - It will add a linear regression line in the plot that we will use to find the correlation
  - Set "method" argument to "Im" for the geom\_smooth layer

Save all commands to a file "practice-3.R"

# TUTORIAL 4 Introductory Statistics with *R*

# Two-sample *t*-test I. Data & Hypothesis

#### • ozone [] read\_csv("ozone.csv")

<u>Question</u>: Ozone level differs between

#### east/west?

ER/CUNY

 $\cap$ 

 $\bigcirc$ 

Ċ

## Null Hypothesis (Ho): No difference

| ( impse ( Jzone)                       |                                       |
|----------------------------------------|---------------------------------------|
| ## Observations: 20<br>## Variables: 3 |                                       |
| ## \$ Ozone                            | (dbl) 61.7, 64.0, 72.4, 56.8, 52.4, 4 |
| ## \$ Garden.location                  | (fctr) West, West, West, West, West,  |
| ## \$ Garden.ID                        | (fctr) G1, G2, G3, G4, G5, G6, G7, G8 |
|                                        |                                       |

|    | Ozone       | Garden.location | Garden.ID   |
|----|-------------|-----------------|-------------|
|    | <dbl></dbl> | <chr></chr>     | <chr></chr> |
| 1  | 61.7        | West            | G1          |
| 2  | 64          | West            | G2          |
| 3  | 72.4        | West            | G3          |
| 4  | 56.8        | West            | G4          |
| 5  | 52.4        | West            | G5          |
| 6  | 44.8        | West            | G6          |
| 7  | 70.4        | West            | G7          |
| 8  | 67.6        | West            | G8          |
| 9  | 68.8        | West            | G9          |
| 10 | 53.7        | West            | G10         |
| 11 | 59.1        | East            | G11         |
| 12 | 78.5        | East            | G12         |
| 13 | 73.9        | East            | G13         |
| 14 | 86.1        | East            | G14         |
| 15 | 78          | East            | G15         |
| 16 | 84.4        | East            | G16         |
| 17 | 77.7        | East            | G17         |
| 18 | 76.8        | East            | G18         |
| 19 | 85.6        | East            | G19         |
| 20 | 73.3        | East            | G20         |

# Two-sample *t*-test II. Data Visualization

#### Boxplo



ozone %>%

 $\cap$ 

@QIU, HUNTER/CUNY

 $\bigcirc$ 

ggplot(data = ozone, aes(x =
Garden.location, y = Ozone)) +
geom\_boxplot() +
geom\_jitter(shape=1, color="red") +
theme\_bw()

#### Violin



#### Ozone %>%

ggplot(data = ozone, aes(x = Garden.location, y = Ozone)) + geom\_violin() + geom\_jitter(shape=1, color="red") + theme\_bw()

## • Two-sample *t*-test III. Run *t*-test

# Do a t.test now....

 $\cap$ 

@OIL

JNTER/CUNY

t.test(Ozone ~ Garden.location, data = ozone)

#### ## Welch Two Sample t-test ## data: Ozone by Garden.location t = 4.2363, df = 17.656, p-value = 0.0005159 ## alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: ## 8.094171 24.065829 sample estimates: ## mean in group East mean in group West ## 77.34 61.26 ##

#### P value -

- Probability that observed difference is due to chance
- (more specifically) probability that t >= 4.2363 under null hypothesis ( $H_o$ )

# T-test IV. Re-plot & Conclude $P = 5.2 \ 10^{-14}$



**Conclusions:** 

 $\bigcirc$ 

@QIL

• Statistical conclusion: The null hypothesis (same mean) is rejected at  $p=5.2 \ 10^{-14}$ 

**Biological conclusion:** The ozone level is significantly different between the east & west locations INTER/CUNY

| III I S LINEAR REGRESSION                                                                                |                  |
|----------------------------------------------------------------------------------------------------------|------------------|
| I. Data & Hypothesis                                                                                     | > ]<br>cs<br>Pa: |
|                                                                                                          | CO               |
| 6                                                                                                        | )                |
| <ul> <li><u>Biological Question</u>: Does soil</li> </ul>                                                | > -<br># 2       |
| moisture affect growth rate?                                                                             |                  |
| • Null Hypothesis (Ho): No correlation                                                                   | 1 2              |
| (r=0)                                                                                                    | 3                |
|                                                                                                          | 5                |
| glimpse (plant_gr)                                                                                       | 7                |
| <pre>## Observations: 50 ## Variables: 2 ## \$ soil moisture content (dbl) 0 4696876 0 5413106 1 6</pre> | 8                |
| ## \$ plant.growth.rate (dbl) 21.31695, 27.03072, 38.98                                                  | 10               |
|                                                                                                          |                  |
|                                                                                                          |                  |

| <pre>&gt; plant_gr &lt;- re csv")</pre> | ad_csv("pla | nt.growth.rate. |
|-----------------------------------------|-------------|-----------------|
| Depresed with colu                      | mn anaifia  | ation           |
| Parsed with colu                        | mn specific | allon:          |
| cols(                                   |             |                 |
| soil.moisture.                          | content = c | ol double(),    |
| plant.growth.r                          | ate = col d | ouble()         |
| )                                       |             |                 |
| /                                       | ···· )      |                 |
| > tbl_dI (plant_g                       | r)          |                 |
| # A tibble: 50 x                        | 2           |                 |
| soil.moisture                           | .conte~ pla | nt.growth.ra~   |
|                                         | <db1></db1> | <db1></db1>     |
| 1                                       | 0.470       | 21.3            |
| 2                                       | 0.541       | 27.0            |
| 3                                       | 1.70        | 39.0            |
| 4                                       | 0.826       | 30.2            |
| 5                                       | 0.857       | 37.1            |
| 6                                       | 1.61        | 43.2            |
| 7                                       | 0.250       | 22.7            |
| 8                                       | 1.67        | 40.2            |
| 9                                       | 1.46        | 46.9            |
| 10                                      | 0.473       | 28.8            |
| # with 40 mo                            | re rows     |                 |



# Linear Regression II. Visualization





# Linear Regression III. Run linear model

```
summary (model pgr)
```

 $\cap$ 

OIL

HUNTER/CUNY

```
##
## Call:
## lm(formula = plant.growth.rate ~ soil.moisture.content,
   data = plant gr)
##
## Residuals:
      Min
               10 Median
                                30
                                       Max
## -8.9089 -3.0747 0.2261 2.6567 8.9406
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
  (Intercept)
                          19.348
                                      1.283 15.08
                                                       <2e-16
                                              12.49
## soil.moisture.content 12.750
                                      1.021
                                                      <2e-16
##
  (Intercept)
                         ***
## soil.moisture.content ***
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.019 on 48 degrees of freedom
## Multiple R-squared: 0.7648, Adjusted R-squared: 0.7599
## F-statistic: 156.1 on 1 and 48 DF, p-value: < 2.2e-16
```

#### Conclusions:

- The null hypothesis (no correlation) is rejected at *p*<2.2e-16
- The plant growth rate is significantly correlated with soil moisture with R<sup>2</sup>=0.7599

# Linear Regression IV. Re-plot (add regression line & confidence band)

 $16 \cap$ 

@QIU

HUNTER/CUNY

 $\bigcirc$ 



# PRACTICE #4

- Does the "Sepal.Length" differ between the two species "virginica" & "vesicolor"? Perform a *t*-test and include all 4 steps
- How about the "Sepal Width"? Perform a *t*-test and include all 4 steps
- Are the "Sepal.Width" and "Sepal.Length" correlated in the species "setosa"? Show all 4 steps.
- How about in the other two species?
   Batch testing the above correlation in all 3 species at once
   Save all commands to a file "practice-4.R"