QuBi/modules/biol302: Difference between revisions

From QiuLab
Jump to navigation Jump to search
imported>Ppagan
No edit summary
imported>Ppagan
No edit summary
Line 43: Line 43:
Sequences on [[genbank]] have both basic reference information (such as what the sequence is, what organism it came from, and bibliographical information) and sequence [[annotations]]. Some sequences are more richly annotated than others - it is up to researchers to annotate the sequences they generate, which requires extra work. For this exercise you will be working will a well-annotated sequence: [[accession number]] AF527840. Explore its annotation and use it to complete the following set of tasks.
Sequences on [[genbank]] have both basic reference information (such as what the sequence is, what organism it came from, and bibliographical information) and sequence [[annotations]]. Some sequences are more richly annotated than others - it is up to researchers to annotate the sequences they generate, which requires extra work. For this exercise you will be working will a well-annotated sequence: [[accession number]] AF527840. Explore its annotation and use it to complete the following set of tasks.


# DRAW a diagram of this gene, including its introns/exons, 3'/5' UTRs, +1. (Note: this diagram is going to be very handy for the last set of questions.)
# DRAW a diagram of this gene using the information and coordinates listed in the annotation. (Note: this is the bulk of the assignment and this diagram is needed for the last set of questions. Don't get lazy on this.)
- Label each feature with its coordinates. For example, if an exon starts at 500bp and ends at 1000bp, label it as such.
##Label the top of the diagram with basic information, such as the gene's name, organism, etc.. Someone should be able to pick up your diagram and know exactly what they're looking at.   
- Label the diagram with basic information, such as the gene's name and th organism's species.   
##Including introns, exons, 3'/5' UTRs, +1, and exact coordinates. The mRNA annotation states which segments are used to create mRNA, and the CDS annotation states which parts code amino acids (CDS = coding sequence).
- The drawing does not have to be exactly to scale, a reasonable effort should be made to do so. Put length markers on your drawing (for example, every 5000bp.)
##Draw the diagram mostly to scale. It does NOT have to be perfect, but make a reasonable effort. Put a scale bar and length markers on your drawing.
- The mRNA annotation states which segments are used to create mRNA, and the CDS annotation states which parts actully code amino acids (CDS = coding sequence).
# How does the sequence vary at positions X, X, and X for this gene?
# How does the sequence vary at positions X, X, and X for this gene?
# What kinds of repeat regions can be found in this gene?
# What kinds of repeat regions can be found in this gene?

Revision as of 17:38, 21 February 2013

BIOL 302 Lab (Bioinformatics Exercises)

Research in molecular genetics requires effective use of bioinformatic tools to analyze and understand the genetic materials being worked with. The following exercises will expose you to real-world scenarios and introduce you to the methods and tools you can use to solve these problems.

Identification of mdm2 Splice Variants Using BLAST

4seq.png

A diagram of the gene used in this exercise and its splice variants. By the end of this module you will create a similar diagram.

Objectives

  • Learn to use Genbank database and BLAST tool to analyze nucleotide sequences
  • Use BLAST to identify

Key Concepts

Blast
Genbank
Annotation
Accession Number
Alternative Splicing

Exercise

Genbank Accession # cDNA Clone Description Cell Line Length (bp)
AF527840 Genomic DNA 34,088
EU076746 P2-MDM2-C1 cDNA missing exons 5-9 & 11 MANCA 427
EU076747 P2-MDM2-10 cDNA missing exon 10 ML-1 842
EU076748 P2-MDM2-C cDNA missing exons 5-9 A876 505
EU076749 P2-MDM2-FL Full-length cDNA SJSA-1 845
Explore the gene annotation for AF527840.

Sequences on genbank have both basic reference information (such as what the sequence is, what organism it came from, and bibliographical information) and sequence annotations. Some sequences are more richly annotated than others - it is up to researchers to annotate the sequences they generate, which requires extra work. For this exercise you will be working will a well-annotated sequence: accession number AF527840. Explore its annotation and use it to complete the following set of tasks.

  1. DRAW a diagram of this gene using the information and coordinates listed in the annotation. (Note: this is the bulk of the assignment and this diagram is needed for the last set of questions. Don't get lazy on this.)
    1. Label the top of the diagram with basic information, such as the gene's name, organism, etc.. Someone should be able to pick up your diagram and know exactly what they're looking at.
    2. Including introns, exons, 3'/5' UTRs, +1, and exact coordinates. The mRNA annotation states which segments are used to create mRNA, and the CDS annotation states which parts code amino acids (CDS = coding sequence).
    3. Draw the diagram mostly to scale. It does NOT have to be perfect, but make a reasonable effort. Put a scale bar and length markers on your drawing.
  2. How does the sequence vary at positions X, X, and X for this gene?
  3. What kinds of repeat regions can be found in this gene?


Exit Questions