Summer 2021: Difference between revisions

From QiuLab
Jump to navigation Jump to search
imported>Weigang
imported>Weigang
Line 3: Line 3:
===August 2021===
===August 2021===
* Wrapping up: Bb transcriptomes, [https://www.rdocumentation.org/packages/plotly/versions/4.9.4.1/topics/ggplotly make interactive plots using ggplotly]
* Wrapping up: Bb transcriptomes, [https://www.rdocumentation.org/packages/plotly/versions/4.9.4.1/topics/ggplotly make interactive plots using ggplotly]
* Monte Carlo Club Season IV. [[Monte_Carlo_Club Machine | learning with Scikit-Learn]]
* Monte Carlo Club Season IV. [[Monte_Carlo_Club | Machine learning with Scikit-Learn]]


===July 2021===
===July 2021===

Revision as of 14:27, 10 August 2021

Group meeting/Field trip schedule

Quabbin Reservoir & Beaver Lake, MA

August 2021

July 2021

  • Belfer housekeeping duties: During the month of July, members of Qiu lab (including the PI) will be responsible for the following:
  1. Performing a careful sweep of the common seating, eating, and food preparation areas each Monday, Wednesday, and Friday. The purpose of this sweep is to do some light organization/cleaning and to identify persistent cleanliness problems that should then be reported (via the lab’s PI) to myself and Elizabeth Cohn (ec2692@hunter.cuny.edu), and the collective PIs of the floor.
  2. Throwing away any personal food (and personal food containers) left in the refrigerators beyond 5 pm on each Friday.
  3. Keeping general tabs on the bathrooms of the floor to ensure cleanliness. Persistent cleanliness problems that are unreasonable for the WCMC custodial staff should be addressed by the members of the floor.
  • July 2, Friday. Field trip
    • location: Rockefeller State Park
    • Participants: Saymon, Lia, Joy, Weigang
  • Lab meeting: Weekly on Tuesday 11-1

June 2021

  • June 3, 2021 (Thursday). Summer research kickoff
  • June 8, 2021 (Tuesday). 11-2
    • Algorithm development (Brian)
    • NLP models of protein structure (Eamen, Roman, Edgar)
    • Bb transcriptomics (Niemah & Jackie)
    • HIV compartmentalization (Lily)
  • June 10, 2021 (Thursday). No meeting. Field day
    • Location: Hackscher State Park, Long Island
    • Participants: Desiree, Lily, Lia, John, Weigang
    • Outcome: ~60 nymph ticks
  • June 15, 2021 (Tuesday). 11-2. Lab meeting
  • June 17, 2021 (Thursday). No meeting. Field day
    • Location: Quabbin Reservoir, MA
    • Participant: Saymon, Brian, Lia, Weigang
    • Outcome: ~130 nymph ticks
  • June 22, 2021 (Tuesday). 11-1
    • Niemah & Jackie will work on collecting transcriptome data into Excel sheets
    • Lily presented latest trees on HIV compartmentalization
    • Roman will work on env gene embedding using Facebook pretrained ESM model
  • June 24, 2021 (Thursday). Lab meeting 11-1
  • June 30, 2021 (Wed). Lab meeting 11-1

Project 1. Borrelia genomics

Transcriptome-table.png

Project 2. Design algorithms for vaccines

Project 3. HIV compartmentalized evolution

by Lily
  • Participants: Lily
  • Questions and goals
    • Do HIV evolve cell type tropisms within the host? Specifically, the Neural(N)-tropism vs T-cell(T)-tropism?
    • Build a classifier of N-tropism HIV subtypes
    • A presentation for an HIV conference in October
  • Reading list
  • Data sets
    • ~500 sequences of env genes from 15 patients
    • 2nd time point single-cell genome sequences for some of the patients
    • Experimentally verified N-tropism subtypes
  • Approach
    • Evolutionary mechanisms: mutation, recombination, and adaptive selection
    • Homoplasy index as a measure of compartmentalization? Randomization to obtain p-values of HI.
    • Evolutionary rates & signature (BEAST)
    • Tests of natural selection (PAML site models, branch-site models & MK analysis)
    • Phylogenetic analysis: tree per individual; supertree; haplotype networks (per individual)
    • Simulated compartmentalization

Project 4. Natural Language models of proteins

  • Participants: Eamen, Roman, and Edgar
  • Questions & Goals
  1. Learn, implement, and compare the existing tools
  2. Fine-tuning for OspC, to be integrated with the centroid algorithm
  3. 2nd-generation centroid design: k-means algorithm (with applications to vls, Dengue, flu B)